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Introduction

Human Effects on Climate:

Human activities are continuing to affect the Earth’s energy budget
emissions:

radiatively important gases and aerosols

changing land surface properties.

In the absence of external forcing, periodic and chaotic variations on a
vast range of spatial and temporal scales are observed.

Global surface air temperatures over land and oceans have increased
over the last 100 years.

The oceans’ uptake of COZ2 is having a significant effect on the
chemistry of sea water.

Climate change, whether driven by natural or human forcing, can lead
to changes in the likelihood of the occurrence or strength of extreme
weather.
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Completing the Circle:
Land and Ocean interaction with the Atmosphere
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Hurricanes and tropical storms

Global frequency of occurrence of tropical cyclones will either decrease
or remain essentially unchanged

likely increase in both global mean tropical cyclone maximum wind
speed and precipitation rates.

influence of climate change on tropical cyclones is likely to vary by
region, low confidence in region-specific projections of frequency and
intensity.

medium confidence that precipitation will be more extreme near the
centres of tropical cyclones making landfall in North and Central
America

frequency of the most intense storms will more likely than not increase
substantially in some basins



Track of hurricanes:

Data from 1949 in the Pacific, from 1851 in the Atlantic

http://www.nhc.noaa.gov/climo/images/1851 2013 mjrhurr.j

Major Hurricane History

Dt rom 15939 in the Pacific, from 1851 in e Ellantic

Major Hurricane
Red: Tropical Storms
Red (dashed): Remnant Storm


http://www.nhc.noaa.gov/climo/images/1851_2013_mjrhurr.jpg

Number of tropical systems (1855-2008)
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Global mean sea level rise (cm)
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Extratropical storms

The global number of ETCs is unlikely to decrease by more
than a few percent.

It is more likely than not, based on projections with medium
confidence, that the North Pacific storm track will shift
poleward.

It is very likely that increases in Arctic, North American
precipitation by the end of the 21st century (2081-2100)

More precipitation associated with enhanced extremes of
storm-related precipitation.
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Southwest Monsoon
Observations

The warm season precipitation in northern Mexico and the
southwestern USA is strongly influenced by the NAMS.

No distinct precipitation trends have been seen over the last half of the
20th century

Increasing intensity and decreasing frequency of events, as well as the
decreasing length of the monsoon season itself.

There has also been a systematic delay in monsoon onset, peak and
termination

Increase in extreme precipitation events associated with land-falling
hurricanes.

Positive trends precipitation amounts have been detected in the
northern fringes of the core area, that is, Arizona and western
New MeXxico.
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Southwest Monsoon
Forecasts

It has been difficult to simulate many important NAMS-related
phenomenon in global climate models

Confidence in projections of monsoon precipitation changes is currently
low.

No consensus on future changes of monsoon timing.
Temperature increases are consistently projected in all models.

This will likely increase the frequency of extreme summer
temperatures, together with projected increase in consecutive dry days.
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David K. Adams and Andrew C. Comrie
University of Arizona
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October 1997
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Figure 3. Schematic vertical (longitude-pressure) cross section through the North
American Monsoon System at 27.5°N. Topography data was used to establish the
horizontal scale and observed wind fields were used to establish the vertical circulations.
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Nocturnal
storms are most
common in low

deserts of

southern
Arizona
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Fic. 7. Percentage of precipitation events occurring between
2000 and 0800 true solar time in Arizona for the months of July
and August [redrafted from Balling and Brazel (1987)]. Note
gradient from the Mogollon Rim and Colorado Plateau to the low
deserts of central Arizona.



Tropical connection of moisture transport into the Desert Southwest
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ntial for new project fires.

|:8. Median "Monsoon" Start Dates Based on Minimum RH Not < 20 % for More Than 2 Consecutive Days. This likely reflects a significant
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Wet and Dry Jet Stream Patterns

Wet

. “ ‘t\ﬁ r v

Dry /E-\ . (b)

Figure 13. Schematic of the typical lower-tropospheric (700-hPa) circulation features
(heights and winds) that accompany (a) wet and (b) dry Gulf of California moisture
surges.



Related Phenomena and Risks

Figure 4. Typical visible satellite image taken in early afternoon (around 1:00 pm local

time) showing thunderstorms building in the mountains northeast, east and southeast of
Tucson, AZ.
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Figure 5. Visible (left) and infrared (right) satellite images taken later that afternoon
(around 5:30 pm local time) showing that the storms have consolidated into a large mass
and moved into the deserts

Satellite view of thunderstorms
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Figure 6. A line of severe thunderstorms detected by radar at 5:30 pm under the large
cloud mass shown in Figure 5.

Thunderstorm Precipitation as viewed from radar
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Pyrocumulus

29



"King fire" Placerville, CA: 17 Sept. 2014

"Zaca fire", Santa Barbara County, CA: August 2007

Haboob

Phoenix AZ: 3 July 2014

Phoenix, AZ: 6 Sep 2014
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https://www.youtube.com/watch?v=pUpNL0h-9dU
https://www.youtube.com/watch?v=wMNZimmNnMY
https://www.youtube.com/watch?v=UDAVuOt9u30
https://www.youtube.com/watch?v=LC2reJT9egE

Moist

ure Flow into the eastern Rockies and Desert Southwest
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Colorado Flood: September 2013

http://coflood2013.colostate.edu/satellite.html
Boulder Area Flood of September 2013: Climate and Weather Information

-

* Near Dillon Road: image courtesy of Will von Dauster, NOAA  * Boulder High School Grounds: image courtesy of Bruce Raup, NSIDC,CIRES/CU

Fa

Water vapor flow from satellite
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http://en.wikipedia.org/wiki/2013_Colorado_floods#/media/File:North_American_Water_Vapor_Systems.gif
http://coflood2013.colostate.edu/satellite.html

Trends of precipitation amount, frequency and intensity in the U.S.

Thomas R. Karl and Richard W. Knight,
Bulletin of the American Meteorological Society, Feb. 1998
NOAA/NESDIS/National Climatic data Center

#

* Near Dillon Road: image courtesy of Will von Dauster, NOAA  * Boulder High School Grounds:
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Fic. 2. Time series of the percent contribution of the upper 10 percentile of daily precipitation events to the total annual precipitation
area-averaged across the United States. Smooth curve is a nine-point binomial filter, and the trend is also depicted.

National trends in intense precipitation
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Precipitation and Damaging Floods:
Trends in the United States, 1932-97.

Roger A. Pielke Jr. and Mary W. Downton
Environmental and Societal Impacts Group
National Center for Atmospheric Research
Boulder CO
Journal of Climate, Oct 2000

The relationship of climate, hydrology, and society in producing damaging floods is
complex and NOT fully understood.

Climate plays an important, but by no means determining role in the growth of
flood damage in the U.S. in recent decades.

This should provide optimism to decision makers seeking to reduce vulnerability to
floods,

Suggests that local actions can have a significant effect, independent of the climate
variations of the future.
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Factors Contributing to Damaging Floods
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Trends in property losses due to floods are affected by increasing population and wealth

{(a) LS. Per Capita Flood Damags, 1932 — 1997
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Frc. 3. (a) U.S. per capita flood damage 1932—-97 adjusted to current
1995 dollars. (b) U.S. flood losses per million dollars tangible wealth
1932—-97 adjusted to current 1995 dollars.
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North American Drought
Varying patterns of 20" Century Drought

NOAA/National Climate Center

The timing and evolution of droughts, and the areas impacted are variable.
Difficult to understand just what causes drought onset and persistence.

The central High Plains appears to be the region most often affected by the
most persistent droughts.

The southern Plains, and parts of Texas in particular, appear to suffer from
the highest frequency of drought.

Evidence from the instrumental record indicates that drought can affect any
region of the U.S.

https://www.ncdc.noaa.gov/paleo/drought/drght_temporal.html
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https://www.ncdc.noaa.gov/paleo/drought/drght_temporal.html
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North American Drought: Reconstructions, Causes, and Consequences

Edward R. Cook*, Richard Seager, Mark A. Cane
Lamont-Doherty Earth Observatory, Palisades, NY 10964 USA
David W. Stahle,

Dept. of Geosciences, University of Arkansas, Fayetteville, AR 72701

e Severe drought is the greatest recurring natural disaster to
strike North America.

e Tree-ring chronologies has now allowed for the reconstruction

of past drought over North America covering the past 1,000
years.
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July 2002

-’ ‘_? L

extrema severe moderale mid- moderately very extremely
drought drought drought range moist maoist moist
-4.00 -3.00 -2.00 -1.99 +2.00 +3.00 +4.00
and to o 1o o 1o and
below -3.99 -2.99 +1.99 +2.89 +3.99 above

Figure 1. Maps showing the U.S. regions most affected by drought in 1980, 1988, and 2002.
The drought metric used for this purpose is the Palmer Drought Severity Index (Palmer, 1965).
Note that the 2002 drought was mostly restricted to the inter-montane West, while the other two
droughts were located more so in more agriculturally important regions of the Great Plains and
Com Belt. (Maps from http://www.ncdc.noaa.gov/oa/climate/research/drought/palmer-maps/).

Recent droughts in the Southwest, Southeast, and northern Plains
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July 19

[ 1 @

extreme severe moderate mid- moderately very extremely
drought drought drought range molst moist moist
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1o nd

and to to 1o to a
below -3.99 -299 +1.99 +2.99 +3.99 above

Figure 2. Maps showing the U.S. regions most affected by drought in 1934 and 1956. These
two years are part of the Dust Bowl and Southwest droughts, considered to be the worst of the

20® century. (Maps from http://www.ncdc.noaa.gov/oa/climate/research/drought/palmer-maps/).

Dust bowl and plains droughts
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Mississippian Droughts
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Figure 12, Four intense decadal droughts over the central United States mawv have contributed to
the svndrome of soecial and environmental change that resulted i1n the decline of complex

Mississippian chiefdoms in the 14™ and 15™ cenmuries. The impacts of the 16™ cenmry drought

Intense decadal droughts in Mississippi valley
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Agricultural potential and “climate shifts” in the southwest

Great American Desert
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Figure 13. Perceptions of the agricultural potential of the American West were influenced by
prevailing climatic conditions (Lawson and Stockton 1981). The Pike expedition of 1806-1807
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Oklahoma, Climate Division 5, Precipitation, January-December
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Increased variability of tornado occurrence in the United States
Harold E. Brooks(1), Gregory W. Carbin(2), Patrick Marsh(2)

NOAA/National Severe Storms Lab (1)
NOAA/National Weather Service Storm Prediction Center

Science, 17 October 2014
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Mean annual tornadoes has remained relatively constant (excluding weakest
tornadoes)

Variability of occurrence has increased since the 1970's:
decrease in days per year with tornadoes
increase in days with many tornadoes

Greater variability on annual and monthly time scales

Changes in the timing of the start of the tornado season
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Tornado counts
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e
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Strong tornadoes from 1954 to 2013:

- much interannual variability
- no long-term linear trend.
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Days Per Year With At Least 1 (E)F1+ Tornado in US (Black)
More Than 30 (E)F1+ Tornadoes (Gray)
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e Number of days with at least one tornado in the United States has decreased from a
mean of 150 to a mean of 100.

e Number of days with many tornadoes has increased dramatically
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Tornado Summary

Convective instability is projected to increase in the United States with warming over
the next century

Wind shear term is projected to decrease

Net effect: the frequency of environments supportive of severe thunderstorms is
projected to increase over the 21st century

Fraction of those storms that are tornadic may decrease

Difficult to have confidence in changes in mean tornado occurrence.

Thunderstorm in Barrow AK: 14 June 2013

Thunderstorm in Barrow (animated gif)
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Summary

More extreme precipitation
Including hurricanes and thunderstorms

Additional effects on flood impact besides climate
Possible shift in large-scale storm tracks

Variability in southwest monsoon uncertain:

Poorly modeled

Delayed unset (prolonged seasonal heat and drought)
Northward extent

Variety of phenomenon: wind, dust, lightning, fire and flood

Droughts
Reoccur in most any region

Change in severity uncertain

Local action can have a significant effect on hazard mitigation
Planning, Preparation, Execution
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